JOURNAL OF APPROXIMATION THEORY 8, 304-314 (1973)

Asymptotic Approximation by Polynomials in the L_1 Norm

J. H. FREILICH

Department of Mathematics, Imperial College, London, S.W. 7, England

AND

P. RABINOWITZ

Department of Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel

Communicated by G. Meinardus

Received May 2, 1971

DEDICATED TO PROFESSOR I. J. SCHOENBERG ON THE OCCASION OF HIS 70TH BIRTHDAY

1. The Chebyshev polynomials of the second kind, $U_n(x)$, play a role in L_1 approximation similar to that played by the Chebyshev polynomials of the first kind, $T_n(x)$, in L_{∞} approximation. Thus the monic polynomial with minimum L_1 norm is $\overline{U}_n(x)$ just as the one with minimum L_{∞} norm is $\overline{T}_n(x)$ where the bars indicate normalization and where we are considering the standard interval I = [-1, 1]. This analogy has not been extended to other situations in which the T_n are used to develop results in L_{∞} approximation. In the present paper, we carry over the method of defect approximation [2, p. 98; 3] to the L_1 case and study expansions of entire functions in series of $U_n(x)$ to get asymptotic values of $E_n^{-1}(f)$ where

$$E_n^{-1}(f) = \min_{p_n \in \mathscr{P}_n} ||f - p_n||_1 = \min_{p_n \in \mathscr{P}_n} \int_{-1}^1 |f(x) - p_n(x)| dx$$

Here $f(x) \in C[-1, 1]$, the space of continuous functions of a real variable on *I* with real or complex values and \mathscr{P}_n is the subspace of polynomials of degree $\leq n$ with complex coefficients. It is clear that an upper bound for $E_n^{-1}(f)$ is given by $2E_n^{\infty}(f)$ where

$$E_n^{\infty}(f) = \min_{p_n \in \mathscr{P}_n} ||f - p_n||_{\infty} = \min_{p_n \in \mathscr{P}_n} \cdot \max_{x \in I} ||f(x) - p_n(x)|.$$

However, for the examples treated here, namely, $e^{\lambda x}$, λ complex, sin tx and cos tx, t real, and e^{x^2} , the asymptotic value of $E_n^{(1)}(f)$ equals that of $E_n^{(\infty)}(f)$.

Copyright (6 1973 by Academe Press, Inc.

All rights of reproduction in any form reserved.

2. The expansion of $U_n(x)$ in powers of x is given by

$$U_n(x) = \sum_{j=0}^{\lfloor n/2 \rfloor} (-1)^j \frac{n+1-2j}{n+1-j} \binom{n+1-j}{j} (2x)^{n-2j}$$
(1)

so that $\overline{U}_n(x) = 2^{-n} U_n(x)$. Further $|\overline{U}_{n-1}| = 2^{1-n}$. If we denote the *r*-th derivative of $U_{n+2}(x)$ by $U_{n+2}^{(r)}(x)$, $r \ge 0$, then we have for any complex constant λ that

$$\sum_{r=0}^{n+2} \lambda^{-r} U_{n+2}^{(r)}(0) = \left(\frac{2}{\lambda}\right)^{n+2} \sum_{s=0}^{\lceil (n+2)/2 \rceil} (-1)^s \left(\frac{\lambda}{2}\right)^{2s} \frac{(n+2-s)!}{s!}$$
(2)

Let now *B* be a continuous linear operator mapping C[-1, 1] into itself and let the inverse operator B^{-1} exist and be continuous. By a standard compactness argument (see, e.g., [2, p. 1]) we are assured of the existence of $\tilde{Q}_{n+1} \in \mathscr{P}_{n+1}$ such that

$$B(\tilde{Q}_{n+1}-f)_{1} \leq B(Q_{n+1}-f)_{1}$$

for all $Q_{n+1} \in \mathscr{P}_{n+1}$ and $f \in C[-1, 1]$. Now set $\delta_n = B(\tilde{Q}_{n+1} - f)$ and choose x_n so that

$$\tilde{Q}_{n+1}(x) - \alpha_n U_{n+1}(x) = p_n(x)$$

where $p_n(x) \in \mathscr{P}_n$. Then the following bounds hold for $E_n^{-1}(f)$:

2 $x_n | - || B^{-1} \delta_n ||_1 \leq E_n^{-1}(f) \leq |p_n - f||_1 \leq 2 ||x_n| + || B^{-1} \delta_n ||_1.$ (3)

Proof. Since the right-hand inequality is obvious, it remains to prove the left-hand one. This follows from the elementary properties of the L_1 norm as follows:

$$E_n^{-1}(f) = E_n^{-1}(\alpha_n U_{n+1} + f - \tilde{Q}_{n+1}) \ge E_n^{-1}(\alpha_n U_{n+1}) - E_n^{-1}(f - \tilde{Q}_{n+1}) \ge 2 \|\alpha_n\| - \|f - \tilde{Q}_{n+1}\|_1 = 2 \|\alpha_n\| - \|B^{-1}\delta_n\|_1.$$

3. In the application of this method of defect approximation, we shall take *B* to be a linear Volterra-type integral operator. By considering the equivalent differential equation and initial value condition, we can show the existence and continuity of B^{-1} . Furthermore, since in our examples, we have that *B* maps \mathscr{P}_{n+1} into \mathscr{P}_{n+k+1} where k = 1 or 2, we need only show that we can find a $\tilde{Q}_{n+1}(x) \in \mathscr{P}_{n+1}$ and a (complex) constant c_n such that $B(\tilde{Q}_{n+1} - f) = c_n U_{n+k+1}$. Our approach is constructive in that for some of the examples, polynomials p_n are determined which are almost best L_1 approximations in the sense that $\|p_n - f\|_1$ is asymptotically equal to $E_n^{-1}(f)$.

EXAMPLE 1. Consider the function $f(x) = e^{\lambda x}$ where λ is a nonzero complex constant. $e^{\lambda x}$ is the unique solution of

$$Bf = f(x) - \lambda \int_0^\infty f(t) \, dt = 1.$$
 (4)

We must now see if we can find a polynomial $\tilde{Q}_{n+1}(x) \in \mathscr{P}_{n+1}$ and a complex constant β_n such that

$$\tilde{Q}_{n+1}(x) - \lambda \int_0^x \tilde{Q}_{n+1}(t) dt - 1 = -\beta_n U_{n-2}(x).$$
(5)

For any given β_n , we have, by considering both real and imaginary parts, a total of 2n + 4 linear equations in 2n + 4 unknowns, with a nonsingular matrix. Hence we have a unique solution once we have determined β_n .

Repeated differentiation of (5) followed by a summation yields that

$$\tilde{Q}_{n+1}(x) = \beta_n \sum_{r=1}^{n+2} \lambda^{-r} U_{n+2}^{(r)}(x).$$

Substituting this polynomial into (5) gives

$$\beta_n = 1 / \sum_{r=0}^{n+2} \lambda^{-r} U_{n+2}^{(r)}(0).$$
(6)

From (2) we have the following estimate for β_n :

$$\frac{|\lambda|^{n+2}}{2^{n+2}(n+2)!} \left(1 - \frac{c}{n-2-c}\right) \leq |\beta_n| \leq \frac{|\lambda|^{n+2}}{2^{n+2}(n+2)!} \left(1 + \frac{c}{n+2-c}\right)$$
(7)

where $c = \exp(|\lambda|^2/4) - 1$. Hence $\beta_n \neq 0$ and $\tilde{Q}_{n+1}(x)$ is not identically zero. Differentiating (5) once yields

$$\tilde{Q}'_{n+1}(t) - \lambda \tilde{Q}_{n+1}(t) = -\beta_n U'_{n+2}(t).$$
(8)

In addition $\tilde{Q}_{n+1}(x)$ must satisfy the boundary condition

$$\tilde{Q}_{n+1}(0) - 1 = -\beta_n U_{n+2}(0)$$

Multiplying (8) by $e^{-\lambda t}$ and integrating from 0 to x, we find that

$$\tilde{Q}_{n+1}(x) - e^{\lambda x} = -\beta_n \left[U_{n+2}(x) + e^{\lambda x} \int_0^x e^{-\lambda t} U_{n+2}(t) dt \right]$$
(9)

Therefore $\|\tilde{Q}_{n+1}(x) - e^{\lambda x}\|_1 \leq 2 |\beta_n| K/|\lambda|$ where $K = e^{|\lambda|} + |\lambda| - 1$. If we now take $\alpha_n = 2(n+2) \beta_n/\lambda$, we have that

$$p_n(x) = \beta_n \left[\sum_{r=1}^{n+2} \lambda^{-r} U_{n+2}^{(r)}(x) - 2(n+2) \lambda^{-1} U_{n+1}(x) \right].$$

Referring to (3), we get the following inequality

$$2(|\beta_n|/|\lambda_1)(2n+4-K) \leq E_n^{-1}(e^{\lambda x}) \leq [p_n-e^{\lambda x}]_1$$
$$\leq 2(|\beta_n|/|\lambda_1)(2n+4+K).$$

Substituting for $|\beta_n|$ from (7), we get our desired result,

$$E_n^{-1}(e^{\lambda x}) = (|\lambda^{+n+1}/2^n(n+1)!)(1+O(n^{-1}))$$

which is the same asymptotic value as for $E_n^{\alpha}(e^{\lambda x})$ [2, p. 96].

EXAMPLE 2. Consider now $f(x) = \cos tx$, $f(x) = \sin tx$, t real. The asymptotic deviation for these functions may be found by setting $\lambda = it$ in Example 1. The calculation from (4) to (9) is valid. In (6) β_n will be real for n even and imaginary for n odd. If we separate the real and imaginary parts of e^{itx} and set

$$\tilde{Q}_{n+1}(x) = \tilde{Q}_{n+1}^{[1]}(x) + i \tilde{Q}_{n+1}^{[2]}(x)$$

the $Q_{n+1}^{[1]}(x)$, $Q_{n+1}^{[2]}(x) \in \mathscr{P}_{n+1}$ are, respectively, even and odd for *n* even and odd and even for *n* odd. Thus for *n* even,

$$\beta_n = 1 / \sum_{r=0}^{(n+2)/2} (-1)^r t^{-2r} U_{n+2}^{(2r)}(0)$$

and for $f(x) = \cos tx$

$$p_{n-2}(x) = \beta_n \left[\sum_{r=1}^{(n+2)/2} (-1)^r t^{-2r} U_{n-2}^{(2r)}(x) + 4(n+2)(n+1) t^{-2} U_n(x) \right]$$

and

$$E_{2k}^{1}(\cos tx) = E_{2k+1}^{1}(\cos tx) = (|t|^{2k}/2^{2k-1}(2k)!)(|t-O(1/2k)|),$$

while for $f(x) = \sin tx$,

$$p_{n-1}(x) := \beta_n \left[\sum_{r=0}^{n/2} (-1)^{r+1} t^{-2r-1} U_{n+2}^{(2r+1)}(x) + 2(n+2) t^{-1} U_{n+1}(x) \right]$$

and

$$E_{2k-1}^{1}(\sin tx) = E_{2k}^{1}(\sin tx) = (|t|^{2k+1}/2^{2k}(2k+1)!)(1+O(1/2k)).$$

Again we have that E_{n}^{-1} is asymptotically equal to E_{n}^{∞} .

EXAMPLE 3. The function $f(x) = \exp(x^2)$ is the unique solution of the equation

$$Bf = f(x) = \int_0^{x^2} 2t f(t) dt = 1.$$

Hence we try to determine a real polynomial $\hat{Q}_n(x)$ and a real β_n such that

$$\tilde{Q}_n(x) = \int_0^x 2t \tilde{Q}_n(t) dt = 1 - -\beta_n U_{n+2}(x).$$
(10)

We choose *n* to be even and determine β_n from the set of equations

$$\tilde{Q}_n^{(r)}(0) = 2(r-1) \; \tilde{Q}_n^{(r-2)}(0) = -\beta_n U_{n+2}^{(r)}(0), \qquad r=2,...,n-2.$$

We have that

$$2^{(n+2)/2} \left\{ \prod_{s=0}^{n/2} (n-1-2s) \tilde{Q}_n(0) \right\}$$

= $\beta_n \left[U_{n+2}^{(n+2)}(0) - \sum_{r=1}^{n-2} 2^r \prod_{s=0}^{r+1} (n-1-2s) U_{n-2}^{(n+2-2r)}(0) \right].$ (11)

But $\tilde{Q}_n(0) - 1 = -\beta_n U_{n+2}(0)$ and $2(n+1) 2(n-1) \cdots 2.1 = (n+2)!/((n+2)/2)!$ so that we have that

$$\frac{(n+2)!}{\left(\frac{n+2}{2}\right)!} = \beta_n \left[U_{n+2}^{(n+2)}(0) + \sum_{r=1}^{(n+2)/2} 2^r \prod_{s=0}^{r-1} (n+1-2s) U_{n-2}^{(n+2-2r)}(0) \right].$$

On applying (1) we find that

$$\frac{1}{\left(\frac{n-2}{2}\right)!} = \beta_n \, 2^{n+2} [e^{-1/2} (1 + O(n^{-1}))].$$

If $\tilde{Q}_n(x) = c_n x^n + \cdots$, then from (10), $2(n + 1)! c_n = \beta_n 2^{n+2}(n + 2)!$ so that $\alpha_n = 2(n + 2) \beta_n$ and

$$2x_n = e^{1/2}(1 + O(n^{-1}))/2^{n-1}(n/2)!.$$

Solving the linear differential equation

$$\tilde{Q}_n'(t) = 2t\tilde{Q}_n(t) = -\beta_n U'_{n+2}(t)$$

308

with initial condition (11), we have that

$$\tilde{Q}_n(x) - e^{x^2} = -\beta_n \left[U_{n+2}(x) + e^{x^2} \int_0^x U_{n+2}(t) 2t e^{-t^2} dt \right].$$

It follows that

$$\|\widetilde{Q}_n(x)-e^{x^2}\|_1\leqslant\beta_n\mid U_{n+2}\|_1\left[1+\int_0^1 2xe^{x^2}\,dx\right]=2K\beta_n$$

with K < e. Furthermore

$$2\beta_n[2(n+2)-K] \leqslant E_{2k-2}^1(e^{x^2}) = E_{2k-1}^1(e^{x^2}) \leqslant 2\beta_n[2(n+2)+K]$$

where n = 2k. Finally, we have that as $k \to \infty$

$$E_{2k-2}^{1}(e^{x^{2}}) = E_{2k-1}^{1}(e^{x^{2}}) = e^{1/2}(1 - O(1/2k))/2^{2k-1}k!$$

(Cf. [5, p. 464]).

4. We now turn to the case where f(x) is analytic in I and hence in a region containing I. Let E_R denote an ellipse with foci at ± 1 and sum of semiaxes R > 1. The set of functions analytic in E_R and Lebesgue integrable on E_R will be denoted by A_R^{-1} . $f(z) \in A_R^{-1}$ for some R.

LEMMA 1. Let $f(z) \in A_R^1$ such that f(z) is real for real z. For any $z_0 \in int(E_R)$ we have that

(i)
$$f(z_0) = \alpha_0/2 + \sum_{n=1}^{\infty} \alpha_n U_n(z_0)$$
 where
 $x_n = \frac{2}{\pi} \int_{-1}^{1} f(x) U_n(x) (1 - x^2)^{1/2} dx, \quad n = 0, 1, \dots$

are the Fourier coefficients corresponding to the weight function $(1 - x^2)^{1/2}$.

(ii) $|| \alpha_n | \leq L(R)/R^{n+1}$ where

$$L(R) = \frac{1}{\pi} \int_{E_R} |f(w)| |dw|.$$

Proof. (i) See [4, Theorem 9.1.1].

(ii) Setting $x = \cos t$, we have that

$$\alpha_n = \frac{1}{\pi i} \int_{-\pi}^{\pi} f(\cos t) \sin (n + 1)t \sin t \, dt.$$

Set $z = e^{it}$ and perform the integration with respect to z on the unit circle C, so that

$$\alpha_n = -\frac{1}{2\pi i} \int_C f\left(-\frac{z^2+1}{2z}\right) (z^{n+1}-z^{-n-1}) d\left(-\frac{z^2-1}{2z}\right).$$

By Cauchy's theorem

$$\alpha_{n} = -\frac{1}{2\pi i} \int_{E_{R}} f\left(\frac{z^{2}+1}{2z}\right) z^{n+1} d\left(\frac{z^{2}+1}{2z}\right)$$

$$= \frac{1}{2\pi i} \int_{E_{R}} f\left(\frac{z^{2}+1}{2z}\right) z^{-n-1} d\left(\frac{z^{2}-1}{2z}\right).$$
(12)

Now under the transformation $w = (1/2)(z \pm 1/z)$, w describes the ellipse E_R as z describes a circle of radius 1/R or R. Taking these cases respectively for the integrals in (12), we find that

$$\|x_{n}\| = \frac{1}{\pi} \int_{E_{R}} |f(w)| \|dw\|/R^{n+1}.$$
 (13)

COROLLARY 1. If f(z) satisfies the conditions of Lemma 1, then

$$|E_n^{-1}(f)| = 2L(R)/R^{n+1}(R-1).$$

Proof.

$$E_n^{-1}(f) \le |f(x)| + rac{lpha_0}{2} + \sum_{k=1}^n |lpha_k U_k(x)|_1 \le 2 \sum_{k=n+1}^\infty |lanksymbol{x}_k|$$

from which the result follows.

THEOREM 1 (cf. [1, p. 115]). Let f(z) be an entire transcendental function which is real for real z. Then there exists a sequence of integers n_1 , n_2 ,..., such that

$$\lim_{n \to \infty} \left(E_{n_n}^1(f) / 2 \mid \alpha_{n_n+1} \mid \right) = 1$$

The sequence $\{n_{\mu}\}$ exists if and only if

- (1) $x_{n_{\mu}+1} \neq 0$ $\mu = 1, 2, ...,$
- (2) $\sum_{r=n_{\mu}+2}^{\infty} \|\alpha_{r}\| \to o(|\alpha_{n_{\mu}+1}|)$ as $\mu \to \infty$.

Proof. Since f(z) is transcendental, we can find a sequence $\{n_p\}$ such that

 $\alpha_{n_p \neq 1} \neq 0$. Since by (13), $\lim_{n \to \infty} (\alpha_n)^{1/n} = 0$, there exists a subsequence $\{n_\mu\}$ such that for all μ

$$\|lpha_{n_{\mu}+k}/lpha_{n_{\mu}+1}\|\leqslant \delta_{\mu}^{k+1}, \qquad k=1,\,2,...,$$

where $\delta_{\mu} = o(1)$ as $\mu \to \infty$. Thus

$$\sum_{k=n_{\mu}+2}^{\infty} |\alpha_{k}| \leq \frac{\delta_{\mu}}{1-\delta_{\mu}} |\alpha_{n_{\mu}+1}|, \qquad \mu = 1, 2, \dots$$
 (14)

Setting

$$p_{n_{\mu}}(x) = \alpha_0/2 + \sum_{k=1}^{n_{\mu}} \alpha_k U_k(x),$$

we have that

$$f(x) \sim p_{n_{\mu}}(x) \sim \sum_{j=1}^{\infty} \alpha_{n_{\mu}+j} U_{n_{\mu}+j}(x)$$

and

$$E_{n_{\mu}}^{1}(f) \leq ||f(x) - p_{n_{\mu}}(x)||_{1} \leq 2 ||\alpha_{n_{\mu}+1}|| + 2 \sum_{j=2}^{\infty} ||\alpha_{n_{\mu}+j}||.$$

Furthermore

$$egin{aligned} E_{n_{\mu}}^{1}(f) \geqslant E_{n_{\mu}}^{1}\left(f - \sum\limits_{j=2}^{\infty} lpha_{n_{\mu}+j} U_{n_{\mu}+j}
ight) - E_{n_{\mu}}^{1}\left(\sum\limits_{j=2}^{lpha} lpha_{n_{\mu}+j} U_{n_{\mu}+j}
ight) \ &\geqslant 2 \mid lpha_{n_{\mu}+1} \mid - 2 \sum\limits_{j=2}^{\infty} \mid lpha_{n_{\mu}+j} \mid. \end{aligned}$$

The result follows from (14).

EXAMPLE 1. If t is a real number, then [2, p. 96]

$$e^{tx} = I_0(t) + 2 \sum_{n=1}^{\infty} I_n(t) T_n(x)$$

where

$$I_n(t) = \sum_{j=0}^{\infty} \frac{(t/2)^{2j+n}}{j! (n+j)!}$$

is the modified Bessel function of order n. On differentiating, we obtain

$$e^{tx} = \frac{2}{t} \sum_{n=0}^{t} (n+1) I_{n-1}(t) U_n(x).$$

Now conditions (1) and (2) of Theorem 1 will be satisfied for $n_n = \mu$, $\mu = 1, 2, ...$. It follows that as $n \to \infty$

$$E_n^{-1}(e^{ix}) = 2 \cdot (2/|t|)(n+2) I_{n+2}(|t|)(1+o(1))$$

= $(|t|^{n+1}/2^n(n+1)!)(1+o(1))$

in agreement with our previous result.

EXAMPLE 2. From

$$\sin tx = 2 \sum_{n=0}^{\infty} (-1)^n J_{2n+1}(t) T_{2n+1}(x)$$

[2, p. 96], where

$$J_n(t) = \sum_{j=0}^{\infty} (-1)^j \left(\frac{t}{2}\right)^{2j+1} / j! (n-j)!$$

is the ordinary Bessel function of order n, we get by differentiating, that

$$\cos tx = \frac{2}{t} \sum_{n=0}^{\infty} (-1)^n (2n + 1) J_{2n+1}(t) U_{2n}(x).$$

Taking n_{μ} as the sequence of odd integers, we find that

$$E_{2n}^{1}(\cos tx) = E_{2n+1}^{1}(\cos tx) - (|t|^{2n+2}/2^{2n+1}(2n+1)!)(1+o(1))$$

as before. A similar result holds for $\sin tx$.

Example 3.

$$e^{tx^2} = \frac{a_0(t)}{2} U_0(x) + \sum_{n=1}^{\infty} a_n(t) U_n(x)$$

where

$$a_n(t) = e^{t/2} [I_{n/2}(t/2) - I_{(n+2)/2}(t/2)]$$

= $(e^{t/2} (t/4)^{n/2} / (n/2)!) [1 - o(1)].$

312

Taking again n_{μ} as the sequence of odd integers, we find that

$$E_{2n}^{1}(e^{tx^{2}}) = E_{2n+1}^{1}(e^{tx^{2}}) = (e^{t/2} \mid t \mid^{n+1}/2^{2n+1}(n+1)!)(1+o(1))$$

which agrees with our previous result for t = 1.

We close by stating two theorems without proof inasmuch as their proof is almost identical with the proof of the corresponding theorem for the L_{∞} norm.

THEOREM 2 (cf. [1, p. 116]). Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be an entire transcendental function, real for real z, such that $\lim_{n\to\infty} n^{1/2+} a_n^{-1/n} = 0$. Then there exists a sequence n_{μ} such that $a_{n_{\mu}+1} \neq 0$ and

$$\lim_{\mu\to\infty} E^{\mathbf{1}}_{n_{\mu}}(f) = |a_{n_{\mu}+1}|/2^{n_{\mu}}.$$

THEOREM 3 (cf. [2, p. 98]). Let B be a continuous linear operator which maps the space C[-1, 1] into itself and let the inverse operator B^{-1} exist and be continuous. Suppose that f(x) is an entire function which is real for real z. Let $\tilde{Q}_{n+1}(x) \in \mathcal{P}_{n+1}$ be such that

$$\|B(\tilde{Q}_{n+1}-f)\|_1 \leqslant \|B(Q_{n+1}-f)\|_1 \quad \text{for all} \quad Q_{n+1} \in \mathscr{P}_{n-1}$$

and let α_n be such that

$$\widetilde{Q}_{n+1}^{(\boldsymbol{x})} - \alpha_n U_{n+1}(\boldsymbol{x}) = p_n(\boldsymbol{x}) \quad \text{for some} \quad p_n(\boldsymbol{x}) \in \mathscr{P}_n \,.$$

Then there exists a sequence of integers n_{μ} , $\mu = 1, 2,...,$ such that

$$\|p_{n_{\mu}}-f\|_{1}=E_{n_{\mu}}^{1}(f)(1+o(1)) \quad as \quad \mu\to\infty.$$

ACKNOWLEDGMENT

The authors wish to thank Professor G. Meinardus for his many suggestions which have been incorporated in this paper.

REFERENCES

- S. N. BERNSTEIN, "Leçons sur les Propriétés Extrémales et la Meilleure Approximation des Fonctions Analytiques d'une Variable Réelle, Gauthier-Villars, París, 1926.
- G. MEINARDUS, "Approximation of Functions: Theory and Numerical Methods," Springer-Verlag, Berlin, 1967.

FREILICH AND RABINOWITZ

- G. MEINARDUS AND H. O. STRAUER, Über Tschebyscheffsche Approximationen der Lösungen linearer Differential- und Integralgleichungen, Arch. Rat. Mech. Anal. 14 (1963), 184–195.
- 4. G. SZEGÖ, "Orthogonal Polynomials" (Rev. ed.), Amer. Math. Soc., New York, 1959.
- 5. A. F. TIMAN, "Theory of Approximation of Functions of a Real Variable" (Translation), Pergamon Press, New York, 1963.