Asymptotic Approximation by Polynomials in the L_{1} Norm

J. H. Гreilich
Department of Mathematics, Imperial College, London, S.W. 7, England
AND
P. Rabinowitz.
Department of Applied Mathematics, The Weizmam Institute of Science, Rehorot, Israel

Communicated by G. Meinardas
Received May 2, 1971

DEDICATED TO PROFESSOR I. J. SCHOENBERG ON THE OCCASION OF HIS 70TH BIRTHDAY

1. The Chebyshev polynomials of the second kind, $U_{n}(x)$, play a role in L_{1} approximation similar to that played by the Chebyshev polynomials of the first kind, $T_{n}(x)$, in L_{x} approximation. Thus the monic polynomial with minimum L_{1} norm is $\bar{U}_{n}(x)$ just as the one with minimum L_{-x} norm is $\bar{T}_{n}(x)$ where the bars indicate normalization and where we are considering the standard interval $I=[-1,1]$. This analogy has not been extended to other situations in which the T_{n} are used to develop results in I,, approximation. In the present paper, we carry over the method of defect approximation [2, p. $98 ; 3]$ to the L_{1} casc and study expansions of entire functions in series of $U_{n}(x)$ to get asymptotic values of $E_{n}{ }^{3}(f)$ where

$$
E_{n}^{1}(f)=\min _{p_{n} \subset \dot{y_{1}}}\left|f-p_{n}\right|_{1}=\min _{p_{n} \subset \mathscr{\mathscr { F } _ { n }}} \int_{1}^{1} \mid f(x)-p_{n}(x) d x
$$

Here $f(x) \in C[-1,1]$, the space of continuous functions of a real variable on l with real or complex values and \mathscr{P}_{n} is the subspace of polynomials of degree $\leqslant n$ with complex coefficients. It is clear that an upper bound for $E_{n}{ }^{1}(f)$ is given by $2 E_{n}{ }^{\infty}(f)$ where

$$
E_{n} \times(f)=\min _{p_{n} \in \mathscr{\mathscr { H } _ { n }}} f-p_{n} \|_{x} \cdots \min _{p_{n} \in \mathscr{P}_{n}} \cdot \max _{x \in I} \mid f(x)-p_{n}(x) .
$$

However, for the examples treated here, namely, $e^{\pi x}, \lambda$ complex. $\sin t x$ and $\cos t x, t$ real, and $e^{x^{2}}$, the asymptotic value of $E_{n}{ }^{1}(f)$ equals that of $E_{n}(f)$.
2. The expansion of $U_{n}(x)$ in powers of x is given by

$$
\begin{equation*}
U_{n}(x)=\sum_{j=0}^{[n[2]}(-1)^{j} \frac{n+1-2 j}{n+1-j}\binom{n-1-j}{j}(2 x)^{n-2 i} \tag{1}
\end{equation*}
$$

so that $\bar{U}_{n}(x)=2{ }^{n} U_{n}(x)$. Further $\bar{U}_{n i t}=2^{1 \cdots n}$. If we denote the r-th derivative of $U_{n+2}(x)$ by $U_{n+2}^{(r)}(x), r \geqslant 0$, then we have for any complex constant λ that

$$
\begin{equation*}
\sum_{r=0}^{n_{1} 2^{2}} \lambda^{-r} U_{n+2}^{(r)}(0)=\left(\frac{2}{\lambda}\right)^{\prime \prime \mid 2} \sum_{n=0}^{[(n-2)}(-1)^{s}\left(\frac{\lambda}{2}\right)^{2 s} \frac{(n+2-s)!}{s!} \tag{2}
\end{equation*}
$$

Let now B be a continuous linear operator mapping $C[-1,1]$ into itself and let the inverse operator B^{-1} exist and be continuous. By a standard compactness argument (see, e.g., [2, p. 1]) we are assured of the existence of $\tilde{Q}_{n, 1} \in \mathscr{S}_{n+1}$ such that

$$
B\left(\tilde{Q}_{n+1}-f\right)_{1}^{\prime} \quad B\left(Q_{n+1}-f\right)_{1}
$$

for all $Q_{n+1} \in \mathscr{P}_{n+1}$ and $f \in C[-1,1]$. Now set $\delta_{n}=B\left(\tilde{Q}_{n+1}-f\right)$ and choose x_{n} so that

$$
\tilde{Q}_{n+1}(x)-x_{n} U_{n+1}(x)=p_{n}(x)
$$

where $p_{n}(x) \in \mathscr{P}_{n}$. Then the following bounds hold for $E_{n}{ }^{1}(f)$:

$$
\begin{equation*}
2 x_{n}\left|-B^{1} \delta_{n}\right|_{1} \leqslant E_{n}^{1}(f)<p_{n}-f_{1} \leqslant 2 x_{n}|+| B^{-1} \delta_{n 1} \tag{3}
\end{equation*}
$$

Proof. Since the right-hand inequality is obvious, it remains to prove the left-hand one. This follows from the elementary properties of the L_{1} norm as follows:

$$
\begin{aligned}
E_{n}{ }^{1}(f) & =E_{n}^{1}\left(\alpha_{n} U_{n+1}+f-\tilde{Q}_{n+1}\right) \geq E_{n}^{1}\left(x_{n} U_{n+1}\right)-E_{n}^{1}\left(f-\tilde{Q}_{n+1}\right) \\
& \geqslant 2: x_{n}-f-\left.\widetilde{Q}_{n+1}\right|_{1}=2: x_{n}-B^{-1} \delta_{n}:
\end{aligned}
$$

3. In the application of this method of defect approximation, we shall take B to be a linear Volterra-type integral operator. By considering the equivalent differential equation and initial value condition, we can show the existence and continuity of B^{-1}. Furthermore, since in our examples, we have that B maps \mathscr{P}_{n+1} into \mathscr{P}_{n+k-1} where $k=1$ or 2 , we need only show that we can find a $\tilde{Q}_{n+1}(x) \in \mathscr{P}_{n+1}$ and a (complex) constant c_{n} such that $B\left(\tilde{Q}_{n+1}-f\right)=c_{n} U_{n+k+1}$. Our approach is constructive in that for some of the examples, polynomials p_{n} are determined which are aimost best L_{1} approximations in the sense that ${ }^{\prime} p_{n}-f_{1}$ is asymptotically equal to $E_{n}{ }^{\prime}(f)$.

Example 1. Consider the function $f(x)=e^{h . x}$ where λ is a nonzero complex constant. $e^{\lambda, r}$ is the unique solution of

$$
\begin{equation*}
B f-f(x)-\lambda \int_{0}^{x} f(t) d t=1 \tag{4}
\end{equation*}
$$

We must now see if we can find a polynomial $\tilde{Q}_{n \mid 1}(x) \in \mathscr{F}_{n_{i 1}}$ and a complex constant β_{n} such that

$$
\begin{equation*}
\tilde{Q}_{n \mid 1}(x)-\lambda \int_{0}^{r} \tilde{Q}_{n+1}(t) d t-1=-\beta_{n} U_{n \ldots 2}(x) \tag{5}
\end{equation*}
$$

For any given β_{n}, we have, by considering both real and imaginary parts, a total of $2 n \div 4$ linear equations in $2 n \div 4$ unknowns, with a nonsingular matrix. Hence we have a unique solution once we have determined β_{n}.

Repeated differentiation of (5) followed by a summation yields that

$$
\tilde{Q}_{n+1}(x) \quad \beta_{n} \sum_{r=1}^{n} \lambda^{-r} U_{n+2}^{(r)}(x) .
$$

Substituting this polynomial into (5) gives

$$
\begin{equation*}
\beta_{n}=1 / \sum_{r=0}^{n+1} \lambda^{-r} U_{n=2}^{(r)}(0) \tag{6}
\end{equation*}
$$

From (2) we have the following estimate for β_{n} :

$$
\begin{align*}
& \frac{\lambda i^{n \cdot 2}}{2^{n \cdot 2}(n-2)!}\left(1-\frac{c}{n-2-c}\right) \\
& \quad \leqslant \beta_{n}!\leqslant \frac{|\lambda|^{n \cdot 2}}{2^{n \cdot 2}(n+2)!}\left(1+\cdots \frac{c}{n} \cdots, 2^{\prime}\right) \tag{7}
\end{align*}
$$

where $c=\exp (\lambda 2 / 4)-1$. Hence $\beta_{n} \neq 0$ and $\bar{Q}_{n+1}(x)$ is not identically zero. Differentiating (5) once yields

$$
\begin{equation*}
\tilde{Q}_{n+1}^{\prime}(t)-\lambda \widetilde{Q}_{n+1}(t)=-\beta_{n} U_{n+2}^{\prime}(t) \tag{8}
\end{equation*}
$$

In addition $\tilde{Q}_{n+1}(x)$ must satisfy the boundary condition

$$
\tilde{Q}_{n+1}(0) \cdots 1=-\beta_{n} U_{n \cdots 2}(0)
$$

Multiplying (8) by $e^{-\lambda t}$ and integrating from 0 to x, we find that

$$
\begin{equation*}
\bar{Q}_{n+1}(x)-e^{\lambda x}=-\beta_{n}\left[U_{n+2}(x)+e^{\lambda x} \int_{0}^{x} e^{-\lambda t} U_{n+2}(t) d t\right] \tag{9}
\end{equation*}
$$

Therefore $\|\left\{\tilde{Q}_{n+1}(x)-e^{\lambda x} \|_{1} \leq 2\left|\beta_{n}\right| K|\lambda|\right.$ where $K-e^{|\lambda|}+\lambda \mid-1$. If we now take $\alpha_{n}=2(n+2) \beta_{n} / \lambda$, we have that

$$
p_{n}(x)=\beta_{n}\left[\sum_{r=1}^{n+2} \lambda^{-r} U_{n+2}^{(n)}(x)-2(n+2) \lambda^{-1} U_{n+1}(x)\right] .
$$

Referring to (3), we get the following inequality

$$
\begin{aligned}
2\left(\left|\beta_{n}\right|: \lambda\right)(2 n+4-K) & \leq E_{n}^{1}\left(e^{\lambda x}\right) \leqslant p_{n}-e^{\lambda x} 1 \\
& 2\left(\beta_{n}|/|\lambda|)(2 n+4+K) .\right.
\end{aligned}
$$

Substituting for $\left|\beta_{n}\right|$ from (7), we get our desired result,

$$
E_{n}^{1}\left(e^{\lambda, x}\right)=\left(\mid \lambda^{n+1} / 2^{n}(n+1)!\right)\left(1 \div O\left(n^{-1}\right)\right)
$$

which is the same asymptotic value as for $E_{n}{ }^{x}\left(e^{\lambda x}\right)$ [2, p. 96].
Example 2. Consider now $f(x)=\cos t x, f(x)=\sin t x, t$ real. The asymptotic deviation for these functions may be found by setting $\lambda=$ it in Example 1. The calculation from (4) to (9) is valid. In (6) β_{n} will be real for n even and imaginary for n odd. If we separate the real and imaginary parts of $e^{i l, r}$ and set

$$
\tilde{Q}_{n+1}(x)=\widetilde{Q}_{n-1}^{[1]}(x)+i \widetilde{Q}_{n+1}^{[2]}(x)
$$

the $Q_{n+1}^{[1]}(x), Q_{n+1}^{[2]}(x) \in \mathscr{P}_{n+1}$ are, respectively, even and odd for n even and odd and even for n odd. Thus for n even,

$$
\beta_{n}=-1 / \sum_{r=0}^{(n+9) / 2}(-1)^{r} t^{-2 /} U_{n+2}^{(2 r)}(0)
$$

and for $f(x)=\cos t x$

$$
p_{n-2}(x)=\beta_{n}\left[\sum_{r=1}^{(n+2) / 2}(-1)^{r} t^{-2 r} U_{u-2}^{(2 r)}(x)+4(n+2)(n+1) t^{-2} U_{n}(x)\right]
$$

and

$$
E_{2 k}^{1}(\cos t x)=E_{2 k+1}^{1}(\cos t x)=\left(\left.t\right|^{2 k} / 2^{2 k-1}(2 k)!\right)(1-O(1 / 2 k)),
$$

while for $f(x)=\sin t x$,

$$
p_{n-1}(x)=\beta_{n}\left[\sum_{r=0}^{n / 2}(-1)^{r!1} t^{-2 r-1} U_{n+2}^{(2 r+1)}(x)+2(n+2) t^{-1} U_{n: 1}(x)\right]
$$

and

$$
E_{2 k-1}^{1}(\sin t x)=E_{2 k}^{1}(\sin t x)=\left(\mid t^{2 k+1} / 2^{2 k}(2 k+1)!\right)(1+O(1 / 2 k))
$$

Again we have that $E_{n}{ }^{1}$ is asymptotically equal to $E_{n}{ }^{\alpha}$.

Example 3. The function $f(x)=\exp \left(x^{2}\right)$ is the unique solution of the equation

$$
B f=f(x) \quad \int_{0}^{x} 2 t f(t) d t
$$

Hence we try to determine a real polynomial $\underline{Q}_{n}(x)$ and a real β_{n} such that

$$
\begin{equation*}
\tilde{O}_{n}(x) \cdots \int_{0}^{x} 2 t \check{Q}_{n}(t) d t \cdots 1 \cdots \beta_{n} U_{n+2}^{\prime}(x) \tag{10}
\end{equation*}
$$

We choose n to be even and determine β_{n} from the set of equations

$$
\tilde{Q}_{n}^{(r)}(0)-2(r-1) \tilde{Q}_{n}^{(r \cdots 2)}(0) \cdots-\beta_{n} U_{n}^{(r)}(0), \quad r-2 \ldots, n \cdots 2
$$

We have that

$$
\begin{align*}
& 2^{(n+2): 2}\left\{\begin{array}{llll}
n / 2 \\
\prod_{s=1}(n \cdots & 1 & \cdots & 2 s
\end{array} \hat{Q}_{n}(0)\right. \\
& =\beta_{n}\left[U_{n-2}^{(n ; 2)}(0) \quad \sum_{r=1}^{n 2} 2^{r} \prod_{*-1}^{n}(n \cdots 1-2 s) U_{n-2}^{\left(n ; 22^{2}\right)}(0)\right] . \tag{11}
\end{align*}
$$

But $\quad \tilde{Q}_{n}(0)-1-\beta_{n} U_{n+2}(0) \quad$ and $\quad 2(n+1) 2(n-1) \cdots 2.1$ $(n-2)!/((n-2) / 2)$! so that we have that

$$
\frac{(n+2)!}{\left(\frac{n+2}{2}\right)!}-\beta_{n}\left[U_{n+2}^{(n+2)}(0) \sum_{r=1}^{(n+2): 2} 2^{\prime} \prod_{n=1}^{1}(n-1-2 s) U_{n=2}^{(n+2-2)}(0)\right] .
$$

On applying (1) we find that

$$
\left.\frac{1}{\left(-\frac{n}{2}-2\right.}\right)!=\beta_{n} 2^{n \cdot 2}\left[e^{-1 / 2}\left(1 \quad O\left(n^{1}\right)\right)\right] .
$$

If $\widetilde{Q}_{n}(x)==c_{n} x^{n}+\cdots$, then from (10), 2(n+1)! $c_{n}=\beta_{n} 2^{n+2}(n-2)$! so that $x_{n}=2(n+2) \beta_{n}$ and

$$
2 x_{n}=: e^{1 / 2}\left(1+O\left(n^{1}\right)\right) / 2^{n} 1(n / 2)!.
$$

Solving the linear differential equation

$$
\tilde{Q}_{n}^{\prime}(t)-2 t \tilde{Q}_{n}(t) \quad-\beta_{n} U_{n}^{\prime}:(t)
$$

with initial condition (11), we have that

$$
\tilde{Q}_{n}(x)-e^{x^{2}}-\beta_{n}\left[U_{n+2}(x)-e^{x^{2}} \int_{0}^{x} U_{n-2}(t) 2 t e^{-t^{2}} d t\right]
$$

It follows that

$$
\tilde{O}_{n}(x)-e^{x^{2}} \|_{1} \leqslant \beta_{n}: U_{n}: 11\left[1+\int_{0}^{1} 2 x e^{x^{2}} d x\right]=2 K \beta_{n}
$$

with $K<e$. Furthermore

$$
2 \beta_{n}[2(n+2)-K] \leqslant E_{2 k-2}^{1}\left(e^{x^{x^{2}}}\right)=E_{2 k-1}^{1}\left(e^{x^{2}}\right)<2 \beta_{n}[2(n+2) ; K]
$$

where $n=2 k$. Finally, we have that as $k \rightarrow \infty$

$$
E_{2 k-2}^{1}\left(e^{x^{2}}\right)=E_{2 k-1}^{1}\left(e^{x^{2}}\right)=e^{1 / 2}(1 \div O(1 / 2 k)) / 2^{2 k-1} k!
$$

(Cf. [5, p. 464]).
4. We now turn to the case where $f(x)$ is analytic in I and hence in a region containing I. Let E_{R} denote an ellipse with foci at ± 1 and sum of semiaxes $R>1$. The set of functions analytic in E_{R} and Lebesgue integrable on E_{R} will be denoted by $A_{R}{ }^{1} . f(z) \in A_{R}{ }^{1}$ for some R.

Lemma 1. Let $f(z) \in A_{R}{ }^{1}$ such that $f(z)$ is real for real z. For any $z_{0} \in \operatorname{int}\left(E_{R}\right)$ we have that
(i) $f\left(z_{0}\right)=\alpha_{0} / 2-\sum_{n=1}^{\alpha} \alpha_{n} U_{n}\left(z_{0}\right)$ where

$$
x_{n}=\frac{2}{\pi} \int_{-1}^{1} f(x) U_{n}(x)\left(1-x^{-2}\right)^{1 / 2} d x, \quad n=0,1, \ldots
$$

are the Fourier coefficients corresponding to the weight function $\left(1-x^{2}\right)^{1 / 2}$.
(ii) $; \alpha_{n} \mid \leqslant L(R) / R^{n+1}$ where

$$
L(R)=\frac{1}{\pi} \int_{E_{R}}|f(w)||d w|
$$

Proof. (i) See [4, Theorem 9.1.1].
(ii) Setting $x=\cos t$, we have that

$$
x_{n}==\frac{1}{\pi i} \int_{-\pi}^{\pi} f(\cos t) \sin (n+1) t \sin t d t
$$

Set $z-e^{\prime \prime}$ and perform the integration with respect to z on the unit circle C, so that

$$
x_{n} \cdot \frac{1}{2 \pi i} \int_{r} f\left(-\frac{z^{2}}{2 z} \frac{1}{2 z}\right)\left(z^{n+1}-z^{1}\right) d\left(\frac{z^{2}}{2 z}\right) .
$$

By Cauchy's theorem

$$
\begin{align*}
x_{n}= & \frac{1}{2 \pi i} \int_{E_{R}} f\left(z^{2} \frac{1}{2 z}\right) z^{n+1} d\left(\frac{z^{2}}{2 z}\right) \\
& \frac{1}{2 \pi i} \int_{E_{R}} f\left(z^{2}-\frac{1}{2 z}\right) z^{\prime \prime 1} d\left(\frac{z^{2}-1}{2 z}\right) \tag{12}
\end{align*}
$$

Now under the transformation $w=(1 / 2)(z \mid / z)$. w describes the ellipse E_{R} as z describes a circle of radius $1 / R$ or R. Taking these cases respectively for the integrals in (12), we find that

$$
\begin{equation*}
\left.x_{n}=\frac{1}{\pi} \int_{E_{R}} f(1) \right\rvert\, d w / R^{n-1} \tag{13}
\end{equation*}
$$

Corollary 1. If $f(z)$ satisfies the conditions of Lemma 1 , then

$$
E_{n}(f) \therefore 2 L(R) / R^{n}(R-1)
$$

Proof.

$$
E_{n}^{1}(f) \div f(x) \quad \frac{x_{0}}{2} \cdots \sum_{l=1}^{n} x_{k} U_{l}(x) \sum_{1} \sum_{k=n}^{\infty} x_{n}
$$

from which the result follows.
Theorem 1 (cf. [1, p. 115]). Let $f(z)$ be an entire transcendental function which is real for real z. Then there exists a sequence of integers n_{1}, n_{2}, \ldots, such that

$$
\lim _{u=x}\left(E_{n_{\mu}}^{1}(f) / 2: x_{n_{\mu} ; 1}\right)-1 .
$$

The sequence $\left\{n_{u k}\right\}$ exists if and only if
(1) $x_{n_{\mu} \mid 1} \neq 0 \quad \mu=1,2, \ldots$
(2) $\sum_{r-n_{\mu}: 2}^{x} \alpha_{r} \quad o\left(n_{n_{\mu}, 1}^{1}\right)$ as $\mu \rightarrow \infty$.

Proof. Since $f(z)$ is transcendental, we can find a sequence $: n_{n}$; such that
$\alpha_{n_{3} \rightarrow 1} \nsucc 0$. Since by (13), $\lim _{n \rightarrow x}\left(\alpha_{n}\right)^{1 / n}=0$, there exists a subsequence $\left\{n_{\mu}\right\}$ such that for all μ

$$
\left.\mid x_{n_{\mu} / \mu} / x_{n_{\mu}+1}\right\} \leqslant \delta_{k}^{1.1}, \quad k=1,2 \ldots .
$$

where $\delta_{u}=o(1)$ as $\mu \rightarrow \infty$. Thus

$$
\begin{equation*}
\sum_{n_{i}+2}^{\infty} \alpha_{k}: \left.\leqslant \frac{\delta_{\mu}}{1-\delta_{\mu}} x_{n_{\mu}-1} \right\rvert\,, \quad \mu=1,2, \ldots \tag{14}
\end{equation*}
$$

Setting

$$
p_{n_{k}}(x)=\alpha_{0} / 2 \div \sum_{l=1}^{n_{k i}} x_{k} U_{k}(x),
$$

we have that

$$
f(x) \cdots p_{n_{j}}(x)=\sum_{j=1}^{\infty} \alpha_{n_{k} j j} U_{n_{\mu}: j}(x)
$$

and

$$
E_{n_{\mu}}^{1}(f) \leqslant\left|f(x)-p_{n_{\mu}}(x)\right|_{1} \leqslant 2\left|\alpha_{n_{\mu}+1}\right|+2 \sum_{j=2}^{\infty} \mid \alpha_{n_{\mu}+j} .
$$

Furthermore

$$
\begin{aligned}
E_{n_{\mu}}^{1}(f) & \geqslant E_{n_{\mu}}^{1}\left(f-\sum_{j=2}^{\infty} \alpha_{n_{\mu}+j} U_{n_{\mu}+j}\right)-E_{n_{\mu}}^{1}\left(\sum_{j=-2}^{\infty} \alpha_{n_{\mu}+j} U_{n_{\mu}+j}\right) \\
& \geqslant 2!\alpha_{n_{\mu}+1}:-2 \sum_{j=2}^{\infty} \mid \alpha_{n_{\mu}+j}!.
\end{aligned}
$$

The result follows from (14).

Example 1. If t is a real number, then [2, p. 96]

$$
e^{\prime \cdot x}=I_{0}(t)+2 \sum_{n=1}^{\infty} I_{n}(t) T_{n}(x)
$$

where

$$
I_{n}(t)=\sum_{j=!}^{\infty} \frac{(t / 2)^{2 j n}}{j!(n-j)!}
$$

is the modified Bessel function of order n. On differentiating, we obtain

$$
e^{t x}=\frac{2}{t} \sum_{n=0}(n+1) I_{n-1}(t) U_{m}(x)
$$

Now conditions (1) and (2) of Theorem 1 will be satisfied for $n_{i i}=\mu$, $\mu=1,2 \ldots$. It follows that as $n \rightarrow \infty$

$$
\begin{aligned}
E_{n}^{1}\left(e^{t x}\right) & =2 \cdot(2 / t)(n \div 2) I_{n}(t)(1+o(1)) \\
& =\left(\mid t^{n: 1} / 2^{\prime \prime}(n+1)!\right)(1+o(1))
\end{aligned}
$$

in agreement with our previous result.
Example 2. From

$$
\sin t x \cdots-2 \sum_{n=0}^{x}(-1)^{n} J_{2 n+1}(t) T_{2 n+1}(x)
$$

[2, p. 96], where

$$
J_{n}(t)=\sum_{j=0}^{x}(-1)^{j}\left(\frac{t}{2}\right)^{2 j 1} / j!(n \cdots j)!
$$

is the ordinary Bessel function of order n, we get by differentiating, that

$$
\cos t x=\frac{2}{t} \sum_{n=-1}^{\infty}(-1)^{n}(2 n \quad \vdots 1) J_{2 n: 1}(t) U_{2 n}(x)
$$

Taking n_{μ} as the sequence of odd integers, we find that

$$
E_{2 n}^{1}(\cos t x)=E_{2 n-1}^{1}(\cos t x)-\left(\mid t^{\left.2^{n 22} / 2^{2 n-1}(2 n-1)!\right)(1+o(1))}\right.
$$

as before. A similar result holds for $\sin t x$.

Example 3.

$$
e^{t x^{2}}=\frac{a_{0}(t)}{2} U_{0}(x)\left\ulcorner\sum_{n=1}^{x} a_{n}(t) U_{n}(x)\right.
$$

where

$$
\begin{aligned}
a_{n}(t) & =e^{t / 2}\left[I_{n / 2}(t / 2) \cdots I_{(n+2) / 2}(t / 2)\right] \\
& =\left(e^{t / 2}(t / 4)^{n / 2} /(n / 2)!\right)[1-o(1)] .
\end{aligned}
$$

Taking again n_{u} as the sequence of odd integers, we find that

$$
E_{2 n}^{1}\left(e^{t n^{2}}\right)=E_{2 n+1}^{1}\left(e^{t x^{2}}\right)=\left(e^{t / 2}|t|^{n+1} / 2^{2 n+1}(n+1)!\right)(1+o(1))
$$

which agrees with our previous result for $t=1$.
We close by stating two theorems without proof inasmuch as their proof is almost identical with the proof of the corresponding theorem for the $L_{\text {, }}$ norm.

Theorem 2 (cf. [1, p. 116]). Let $f(z)=\sum_{n=0}^{x} a_{n} z^{n}$ be an entire transcendental function, real for real z, such that $\lim _{n \rightarrow x} n^{1 / 2} a_{n} 1 / n=0$. Then there exists a sequence n_{μ} such that $a_{n_{\mu}+1} \neq 0$ and

$$
\lim _{l_{n \rightarrow \infty}} E_{n_{k}}^{1}(f)=\left|a_{n_{n_{k}}, 1}\right| / 2^{n_{n}} .
$$

Theorem 3 (cf. [2, p. 98]). Let B be a continuous linear operator which maps the space $C[-1,1]$ into itself and let the inverse operator B^{-1} exist and be continuous. Suppose that $f(x)$ is an entire function which is real for real z. Let $\tilde{Q}_{n+1}(x) \in \mathscr{P}_{n+1}$ be such that

$$
\left\|B\left(\tilde{Q}_{n+1}-f\right)\right\|_{1} \leqslant\left\|B\left(Q_{n+1}-f\right)\right\|_{1} \quad \text { for all } \quad Q_{n+1} \in \mathscr{P}_{n-1}
$$

and let α_{n} be such that

$$
\tilde{Q}_{n+1}^{(x)}-\alpha_{n} U_{n+1}(x)=p_{n}(x) \quad \text { for some } \quad p_{n}(x) \in \mathscr{P}_{n} .
$$

Then there exists a sequence of integers $n_{\mu}, \mu=1,2, \ldots$, such that

$$
\mid p_{n_{\mu}}-f \|_{1}=E_{n_{\mu}}^{1}(f)(1+o(1) \quad \text { as } \quad \mu \rightarrow \infty .
$$

Acknowledgment

The authors wish to thank Professor G. Meinardus for his many suggestions which have been incorporated in this paper.

References

1. S. N. Bernstein, "Leçons sur les Propriétés Extrémales et la Meilleure Approximation des Fonctions Analytiques d'une Variable Réelle, Gauthier-Villars, Paris, 1926.
2. G. Meinardus, "Approximation of Functions: Theory and Numerical Methods," Springer-Verlag, Berlin, 1967.
3. G. Meivardus and H. O. Strauer, Über Tschebyscheffsche Approximationen der Lösungen linearer Differential- und Integralgleichungen, Arch. Rat. Mech. Anal. 14 (1963), 184-195.
4. G. Szeqö, "Orthogonal Polynomials" (Rev. ed.), Amer. Math. Soc., New York, 1959.
5. A. F. Timan, "Theory of Approximation of Functions of a Real Variable" (Translation), Pergamon Press, New York, 1963.
