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1. The Chebyshev polynomials of the second kind, U,(x). play a role
in L, approximation similar to that played by the Chebyshev polynomials
of the first kind, 7,(x), in L.. approximation. Thus the monic polynomial
with minimum L; norm is U,(x) just as the one with minimum Z, norm is
T.{(x) where the bars indicate normalization and where we are considering
the standard interval [ = [—1, 1]. This analogy has not been extended to
other situations in which the 7', are used to develop results in {., approxima-
tion. In the present paper, we carry over the method of defect approximation
[2. p. 98; 3] to the L, casc and study cxpansions of entire functions in series
of U,(x) to get asymptotic values of E,'(f} where

-1
EMf) = min i py |y in 1 |J(x) = patx) dx
Here f(x)e C[—1, 1], the space of continuous functions of a real variable
on [ with real or complex values and #, is the subspace of polynomials of
degree = n with complex coefficients. It is clear that an upper bound for
E,\(f) is given by 2E,=(f) where

Enx(f) - J:E;ln [ f— Pa o, - I}ZIEI"I)W ) n}'éllx ‘\/(Y) = PalX)
However, for the examples treated here, namely, ¢, A complex. sin tx and
cos tx, t real, and ¢*, the asymptotic value of E,(f) equals that of £,*(f).
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2. The expansion of U,(x) in powers of x is given by

[n:2] P
U'n(/\‘) e Z ("])I ﬁi*l

;
io ol —

. 2,{ (” - ; - l) (2A\.)17«-‘_’./’ (l)

so that U,(x) = 2 "Uyx). Further | U, ,; == 2*"". If we denote the r-th
derivative of U, .,(x) by U[7,(x). r == 0, then we have for any complex
constant A that

ni2 [(na) 2]

Souso - 37 ey )it g

r==4) 5=

Let now B be a continuous linear operator mapping C[—1, 1] into itself
and let the inverse operator B! exist and be continuous. By a standard
compactness argument (see. ¢.g., [2, p. 1]) we are assured of the existence of
0, €7, ., such that

B(an‘—l ”“f)‘1 o B(an ”./-) 1

forall Q,., € 2, and fe C[—1. 1]. Now set 8, = B(Q,., —
v,, so that

) and choose

Qn Ll('x) — Xy U'n&l('\‘) - pn(x)
where p,(x) € #, . Then the following bounds hold for E }(f):
2 Xy j - : B 1811 "1 Enj(f) :/772 / 1 2 : Xy » i BMISN 1- (3)

Proof. Since the right-hand inequality is obvious, it remains to prove the
left-hand one. This follows from the elementary properties of the L, norm
as follows:

Enl(f) = Ertl(‘XfLU71+1 +/_ le) 2z Elll(‘/xll(/fﬂ,f'l) - En](fﬁ Qrul)
o2 2 ‘ Ay | — ‘/* Qn-] !1 w2 ‘ X, - B-1 n %:1 .

3. In the application of this method of defect approximation, we shall
take B to be a linear Volterra-type integral operator. By considering the
equivalent differential equation and initial value condition, we can show the
existence and continuity of B~!. Furthermore, since in our examples, we
have that B maps :#,,, into :#,,, , where k == 1 or 2, we need only show
that we can find a 0, (x) € #,,, and a (complex) constant ¢, such that
B(O,., — ) = cuU,.1,,. Our approach is constructive in that for some of
the examples, polynomials p,, are determined which are almost best L., approxi-
mations in the sense that | p, — /!, is asymptotically equal to E,'([).
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ExampLE 1. Consider the function f(x) = e' where A is a nonzero com-
plex constant. e* is the unique solution of

B ) - A [y )

We must now see if we can find a polynomial O, (x) e #, | and a complex
constant f3,, such that

A
-~

le( ) — A ‘ an 1“) dr — 1 — *BHUN 2(x). {
o

For any given 5, , we have, by considering both real and imaginary parts. a

total of 21 = 4 linear equations in 217 —- 4 unknowns, with a nonsingular

matrix. Hence we have a unique solution once we have determined j3, .
Repeated differentiation of (5) followed by a summation yields that

.(\)‘n H(‘\‘) Bn Z /\ L/nl’ 3
Substituting this polynomial into (5) gives

— 13 FU 0 (6)

re-0
From (2) we have the following estimate for 3, :

LR ¢
i I U S

| A e
Pul 202 4 2 )(["/;-2— <') D

where ¢ = exp({ A ¥4) - 1. Hence B, % 0 and O, (x) is not identically
zero. Differentiating (5) once yields

();Iv t) 7 /\Q'rHl(t) — ""BnU'r,z':z(r) (x)
In addition 0, ,(x) must satisfy the boundary condition
Qn+l(0) = “Bnb[nrz(())-

Multiplying (8) by e~ and integrating from 0 to x, we find that

anﬁl('\‘) - e,\.n = VﬁBn l:Un-!—Q(x) e ()/\w “‘ € MUn I) dr:l (9)

At
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Therefore || O, ,(x) — e¥ |, <221 B, | K/ A| where K = el"l 4 [ X — 1. If
we now take o, = 2(n + 2) 8,/A, we have that

n+2

pax) = B, [z )\""U,(L’?,g(,\’) — 2n + 2) /\‘U,,;l(x)].
r=1

Referring to (3), we get the following inequality
20 B A2 =4 — Ky < EMeM) < op, — eV
268, 11ADR2n L 4 = K).
Substituting for | B, | from (7), we get our desired result,
EMe') = (| A120(n + D) - O(r-Y)

which is the same asymptotic value as for £,7(e*) [2, p. 96].

ExavpLE 2. Consider now f(x) = costx, f(x) = sinfx, { real. The
asymptotic deviation for these functions may be found by setting A = iz in
Example 1. The calculation from (4) to (9) is valid. In (6) 8, will be real for

n even and imaginary for n odd. If we separate the real and imaginary parts
of /" and set

Qrz ,,1(.Y) = QS,]I(,\’) -+ ’QEEE:(\)
the QM (x), Q2 (x) e #,.,, are, respectively, even and odd for #n even and
odd and even for # odd. Thus for # even,

(ny2)/2 P
B 1/ Y (=1 HUk0)
r=={0
and for f(x) = cos tx
(n+2) /2 i
m4w~m[2(lYﬂMﬂnwwwaMrnﬂmm}
r=1
and
El(cos 1x) = Eb(cos 1x) = (1 1 */2%7QK))(1 = O(1/2k)),

while for f(x) = sin tx,

B _
pud) = B | 3 (SIS 204 D)0, ()|

r=A0)
and
Ejea(sin 1x) = E(sin tx) = (| 1 *72%0Q2k + D)1 + 0(1/2k)).

Again we have that ' is asymptotically equal to £,*.
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ExaMpLE 3. The function f(x) = exp(x®) is the unique solution of the
equation

NS

Bf  fix) | uftydr L

bt

Hence we try to determine a real polynomial O,(x) and a real 3, such that

L

On(x.) ‘ | 2"(_))'1“) d’ o I ) 1871 L"n—-‘ 2(-\‘)' ”O)

Yo

We choose n to be even and determine 8, from the set of equations
OW©O)y — 2tr — 1) OV 20y B UVL0N. ¢ 2n 2,

We have that

o) Sﬁ(/i . 2s< 0,(0)

es-"n
- w2 ro1 b
: B,L{UL"_,;”(O) S22 [ 1 -2 UNY 2"’(O)l. (1)
- r—1 sl -

But 0.,(0) - 1 = —B,U,.»0) and 20 4+ D 2n - 1y 2.1
(n =- 2)(n = 2)/2)! so that we have that

(reva) i 1 -
27 T i1 2s) U,ﬁ"‘:_,f'f"’(())}.
xoad) .

rel

(n 7‘2)!» :

i

- B [ Uy -

S B2 e L O D))

If O,(x) = ¢, x" -+ -~ then from (10), 2(n 1)l ¢, = B,2"1%n -+ 2)! so that
x, == 2(n - 2) B, and

2, = e - O )2 Yn/2)l.
Solving the linear differential equation

(1) ~ 200,48) -~ BU 1)
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with initial condition (11), we have that

0ux) — e B, [Upeat) = o [, e ar.

0

It follows that
- R -1 R
0L — el < By Uy [1 [ 2xe dx] — 2KB,
‘0
with K <7 e. Furthermore
2Bal2(n + 2) — K] < Eynle”) = Eyy(e”®) <2 28,[2(n + 2) - K]
where 11 = 2k. Finally, we have that as k — «

Ebofer) = Ehafer) = (1 - O(1/26)/22 k! |

(Cf. [5, p. 464]).

4. We now turn to the case where f(x) is analytic in 7 and hence in a
region containing 1. Let Ey denote an ellipse with foci at --1 and sum of
semiaxes R > 1. The set of functions analytic in £, and Lebesgue integrable
on E, will be denoted by A;'. f(2) e Az! for some R.

LEMMA 1. Let f(z) € ARt such that f(z) is real for real z. For any z, ¢ int(Ey)
we have that

(l) f(z()) == "ll),/z i Z:::l ‘/)‘nUn(z()) where

i

21
K 2 ' Jlx) Up(x) (1 — x2)172 (x, no=0,1,...
T Jo

are the Fourier coefficients corresponding to the weight function (1 — x*)1/2,
(i) o, ! =l L(R)/ R where

L(R) = 717 [ o) 1w,

YFp

Proof. (1) See [4, Theorem 9.1.1].

(i1) Setting x == cos #, we have that

[ r= . : )
Xy E { f(cos t) sin (n -+ 1t sin t dt.

it
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Set = = ¢ and perform the integration with respect 1o = on the unit circle

C. so that
-2 [

| -* y oz
b D 'LR T R

| z? | 22 -

I e e ER U e P (12)

Now under the transformation w = (1/2)(z ' 1/z). w describes the ellipse
Er as z describes a circle of radius 1/R or R. Taking these cases respectively

for the integrals in (12), we find that
(- o
| JOv) dw iR (13)

’/T.ER

COROLLARY 1. [f f(2) satisfies the conditions of Lemma 1. then

b‘nl(f) 2L(R)\,"R"”(R ,, ‘)

Proof.

from which the result follows.
Let f(z) be an entire transcendental function

Turorem | (cf. {1, p. 115]).
which is real for real z. Then there exists a sequence of integers n; . ny ...,
such that
}iln} (brlzu(/)y'yz ISP )

The sequence 1n,} exists if and only if
q 1,

0 p= 1 2.

(l) ‘Yn“\]7

(2) Z;—rn“‘i Y

Proof. Since f(z) is transcendental, we can find a sequence {17, such that

ol g, 0 h) as o> 0.
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Ny 1 0. Since by (13), lim, ., (x,)'"" = 0, there exists a subsequence {n,}
such that for all

N | -
\ '\',1“_,/,/N,,“_‘1 T S“ N /\ == l. 2.....

where 8, = o(1) as p > oc. Thus

. %rz N T %: Aot | o=l 2,00 (14)

Setting

Ny

P (X)) = 0f2 = Y o Up(x),

P

we have that
Sy = py (X)) - i]w,,“‘jbf,m‘j(,v)
J
and
EY (1) < [0 — o)l < 2 gy |+ 2 z s
=

Furthermore

) o | oy .
1 - 1 . -1 N
E71,L(f) = E'nu (f - Z (Yn“%jUn“—‘ _7') - Lnu (2 “nu—sjUn,ﬁ j)
\ j2 , \J—2 ;

oc
= 2 ‘ ‘leukl P 2 Z ’ Xyt ‘
J=2

The result follows from (14).

ExampLE 1. If ¢ is a real number, then [2, p. 96]

()I'v . ]ﬂ(f) + 2 i ]n(r) Tn(-\‘)

pel

where

[II(’) = i (1/2)21 n

St = )!
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is the modified Bessel function of order n. On differentiating, we obtain
2 < ‘
e 2 U ) () U,
it )

Now conditions (1) and (2) of Theorem | will be satisfied for n, = p,
po=1,2,.... It follows that as n —

EMe™) = 2 - ()1t ) = 2) 1, .0 1)L+ o(l))
= ()2 - DD - o))

in agreement with our previous result.

ExAMPLE 2. From

Sin 1% <2 Y (1 y (1) To(x)

n=0
[2, p. 96], where

Jo(t) = Z (1) (g)]/

i=0 Ce

is the ordinary Bessel function of order n, we get by differentiating, that

COS ¥ == g Z (=-1y(2n - 1) Jop (1) Usp(x).

==t

Taking 5, as the sequence of odd integers, we find that
E3,(cos tx) == £, (cos tx) = (1t 1732520 - D)L+ o)
as before. A similar result holds for sin 7x.

EXAMPLE 3.

i

e = DY) - Y an Uy

ne=1

where
an(t) = 2Ly n(1/2) — Loy alt/2)]
= (e"(/4y 2 (mn2)D1 -+ o(1)].
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Taking again n, as the sequence of odd integers, we find that

Es ety o Edyaq(ef®y = (e!2 ] ¢ |22 (n DN £ o(1))

which agrees with our previous result for 7 == [.

We close by stating two theorems without proof inasmuch as their proof
is almost identical with the proof of the corresponding theorem for the
L, norm.

TueOREM 2 (cf. [1, p. 116]). Let f(2) = 3, o a2 be an entire transcen-
dental function, real for real z, such that hm,_., n** a, V" = 0. Then there
exists a sequence n, such that ay o A 0 and

lim Eh“(f) == | p, 11 11’/2"“-
oo

THEOREM 3 (cf. [2, p. 98]). Let B be a continuous linear operator which

maps the space C{—1, 1] into itself and let the inverse operator B~' exist and

be continuous. Suppose that f(x) is an entire function which is real for real z.
Let O, .4(x)e P, ., be such that

I B(Q)J+l — i < U BQ,.q — ) forall Q,.,€?, 4
and let ~, be such that
O aUpiy(x) = pu(xX)  for some pux)e 2, .
Then there exists a sequence of integers n, , i = 1, 2...., suclh thar

P — [l = EL(D = o(l)  as p—> .
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